Muscle O(2) consumption by NIRS: a theoretical model.
نویسندگان
چکیده
In the past, the measurement of O(2) consumption ((2)) by the muscle could be carried out noninvasively by near-infrared spectroscopy from oxyhemoglobin and/or deoxyhemoglobin measurements only at rest or during steady isometric contractions. In the present study, a mathematical model is developed allowing calculation, together with steady-state levels of (2), of the kinetics of (2) readjustment in the muscle from the onset of ischemic but aerobic constant-load isotonic exercises. The model, which is based on the known sequence of exoergonic metabolic pathways involved in muscle energetics, allows simultaneous fitting of batched data obtained during exercises performed at different workloads. A Monte Carlo simulation has been carried out to test the quality of the model and to define the most appropriate experimental approach to obtain the best results. The use of a series of experimental protocols obtained at different levels of mechanical power, rather than repetitions of the same load, appears to be the most suitable procedure.
منابع مشابه
Performance of near-infrared spectroscopy in measuring local O(2) consumption and blood flow in skeletal muscle.
The aim of this study was to investigate local muscle O(2) consumption (muscV(O(2))) and forearm blood flow (FBF) in resting and exercising muscle by use of near-infrared spectroscopy (NIRS) and to compare the results with the global muscV(O(2)) and FBF derived from the well-established Fick method and plethysmography. muscV(O(2)) was derived from 1) NIRS using venous occlusion, 2) NIRS using a...
متن کاملModeling oxygenation in venous blood and skeletal muscle in response to exercise using near-infrared spectroscopy.
Noninvasive, continuous measurements in vivo are commonly used to make inferences about mechanisms controlling internal and external respiration during exercise. In particular, the dynamic response of muscle oxygenation (Sm(O(2))) measured by near-infrared spectroscopy (NIRS) is assumed to be correlated to that of venous oxygen saturation (Sv(O(2))) measured invasively. However, there are situa...
متن کاملNoninvasive evaluation of skeletal muscle mitochondrial capacity with near-infrared spectroscopy: correcting for blood volume changes.
Near-infrared spectroscopy (NIRS) is a well-known method used to measure muscle oxygenation and hemodynamics in vivo. The application of arterial occlusions allows for the assessment of muscle oxygen consumption (mVo(2)) using NIRS. The aim of this study was to measure skeletal muscle mitochondrial capacity using blood volume-corrected NIRS signals that represent oxygenated hemoglobin/myoglobin...
متن کاملQuantitative analysis of the postcontractile blood-oxygenation-level-dependent (BOLD) effect in skeletal muscle.
Previous studies show that transient increases in both blood flow and magnetic resonance image signal intensity (SI) occur in human muscle after brief, single contractions, and that the SI increases are threefold larger in physically active compared with sedentary subjects. This study examined the relationship between these transient changes by measuring anterior tibial artery flow (Doppler ult...
متن کاملA cross-validation of near-infrared spectroscopy measurements of skeletal muscle oxidative capacity with phosphorus magnetic resonance spectroscopy.
The purpose of this study was to cross-validate measurements of skeletal muscle oxidative capacity made with near-infrared spectroscopy (NIRS) measurements to those made with phosphorus magnetic resonance spectroscopy ((31)P-MRS). Sixteen young (age = 22.5 ± 3.0 yr), healthy individuals were tested with both (31)P-MRS and NIRS during a single testing session. The recovery rate of phosphocreatin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 87 2 شماره
صفحات -
تاریخ انتشار 1999